

Nutzerorientierte Optimierung verkehrlicher Angebote

Johannes Deyringer – Akademischer Mitarbeiter nachhaltige Mobilität – Hochschule Furtwangen

Hochschule Furtwangen University (HFU)

HOCHSCHULE HFURTWANGEN HFU

- Furtwangen liegt zentral im südlichen Schwarzwald
- Kleine Fachhochschule mit ca 5500 Studenten
- Mobilitätsforschung seit 2016
- Gründung des Instituts MIR 2021

Das Institut MIR

Mobilität

Digitale Infrastruktur

Informatik

Wirtschaftsingenieurwesen Geschäftsprozessmanagement

Projekte

HOCHSCHULE HFURTWANGEN HFU

Abgeschlossenes Projekt

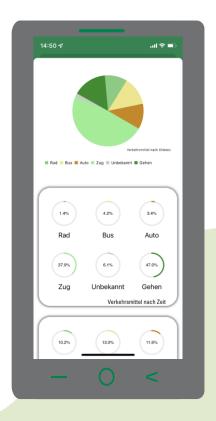
Mobilität an ländlichen Hochschulen

- Vollständiger Name: "Nachhaltige Mobilitätskonzepte für Studierende und Beschäftigte an Hochschulen im ländlichen Raum"
- Beschäftigte sich mit der Mobilitätssituation an den teilnehmenden Hochschulen

Projekte

Projektstart 2022 **ABPA**

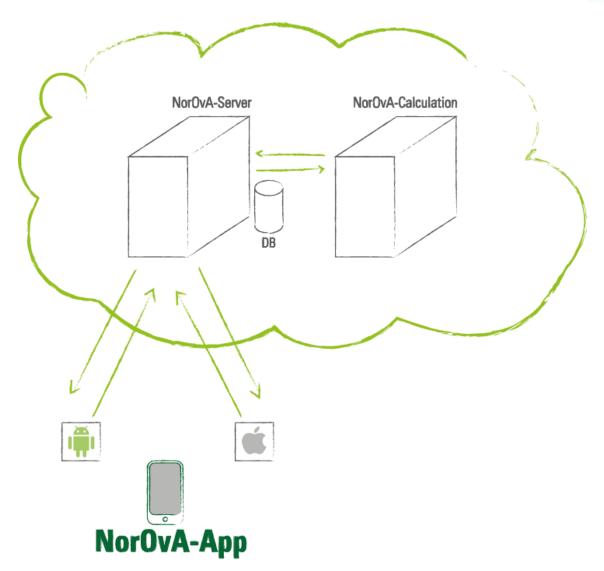
- Analyse der Beschaffenheit von Radwegen
- ABPA→ Erweiterung der digitalen Radwegdaten mit sehr hohem Detailgrad


Projekte

- Steht für: Nutzerorientierte
 Optimierung verkehrlicher Angebote
- Analysieren Mobilitätsverhalten im ländlichen Raum
- NorOvA → Mobilitätsanalyse

Eckdaten

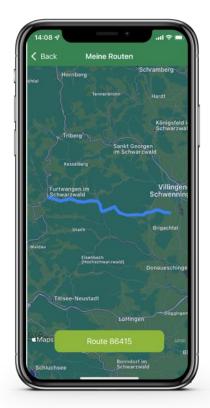
- Verkehrsministerium, Projektlinie MobiArch BW
- Projektvolumen: 250.000 €
- Projektlaufzeit: 2,5 Jahre April 2019 Oktober 2021
- Projektpartner: Verkehrsverbund Schwarzwald-Baar (VSB)

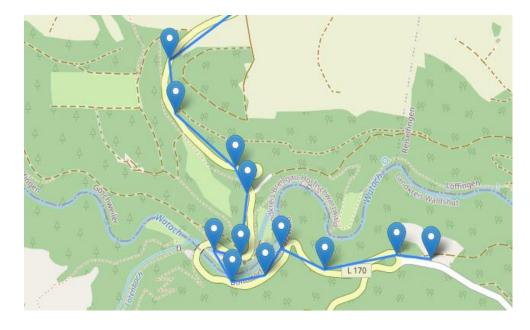


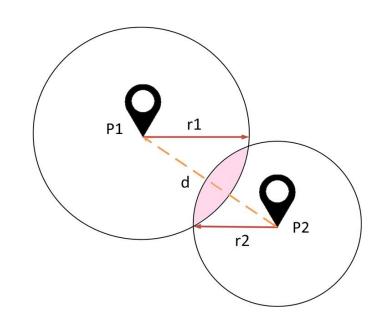
Wie funktioniert NorOvA?

- NorOvA Smartphone App
 - Mobilitätsdatenaufnahme
 - Nutzer:innen Interaktionen
- NorOvA Server
 - Datenverwaltung
 - Kommunikation
- NorOvA Calculation
 - Datenanalyse

Die NorOvA-App

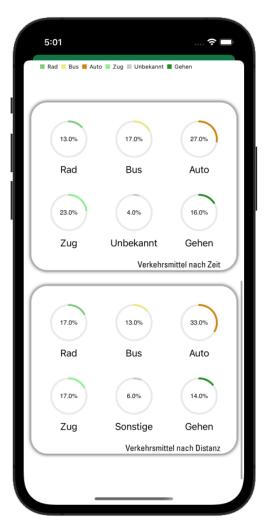




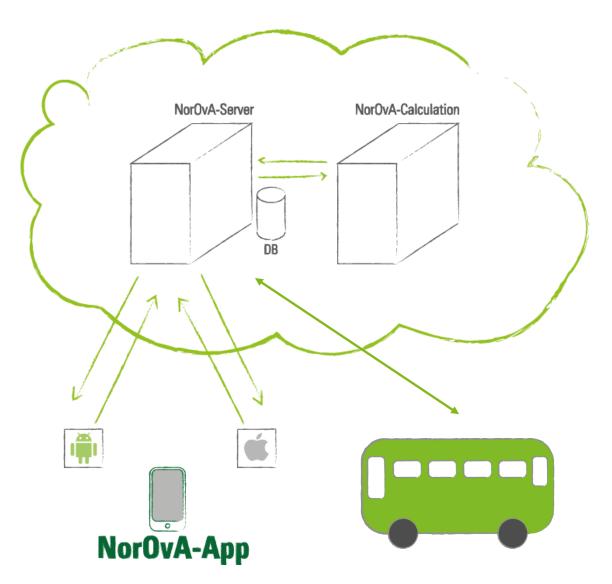


NorOvA Server

- Identifizierung der absolvierten Strecke
- Verkehrsmittelunabhängig
- Daten werden miteinander verknüpft

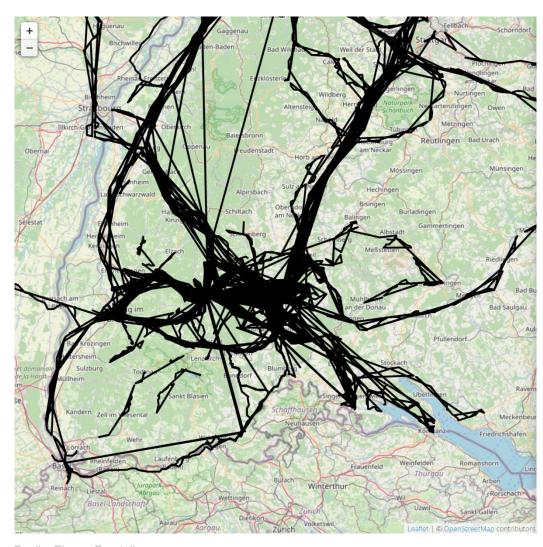

- Erkennung einer Bewegung
- Vergleich aufeinanderfolgender Koordinaten
- Methode: Aussortierung ungenauer Routenpunkte

Modalsplit



- Ermittlung des Modalsplits durch eigene Algorithmen
- Kontextsensitiv
- Kann in die Analysen einfließen

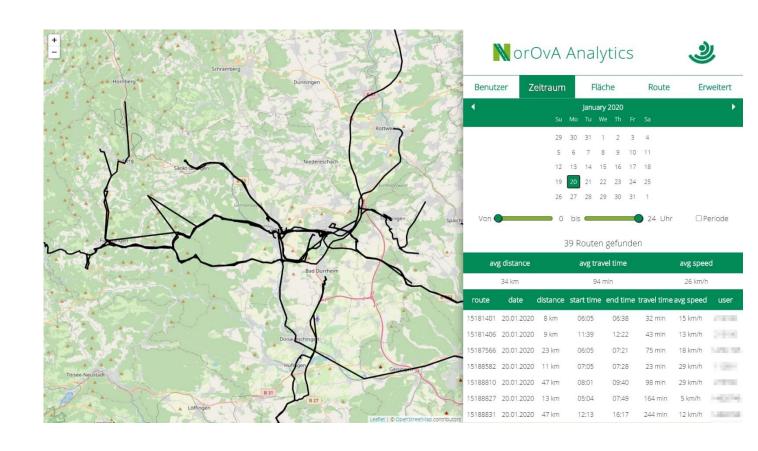
Erweitertes Tracking



- Schnittstelle kann flexibel bedient werden
- Nahezu alle mobilen Geräte können integriert werden
- Bsp.: Bus-Tracking,
 Flottentracking

Projektergebnisse: Mobilitätsdaten ländlicher Raum

Quelle: Eigene Darstellung


- Tracking seit Oktober 2019
- bis zu 60 aktive User täglich
- ~16 mio Mobilitätsdaten*
- 50.000 ermittelte Routen*

^{*} Stand 31. Oktober 2021

Analysewerkzeug

- Darstellung des Mobilitätsgeschehens
- Erkennung von häufig befahrenen Routen
- Erkennung von Stoßzeiten
- Matching der Routen
 - Busfahrplan
 - Mitfahrgelegenheit
- Modalsplitanalyse

White Label Lösung

Features

- Tracking App
- Nutzer:innen Benachrichtigung
- Trackingdatenaufnahme
- Webinterface mit Analysemöglichkeiten
- Datenbank mit Nutzerdaten

Was wird benötigt?

- Umgestaltung der App (Programmierer)
 - Anpassung der Smartphone Apps (iOS + Android)
- Backend Server (Programmierer)
 - Installation der NorOvA-Server Anwendung
 - Anpassung der NorOvA-Server Anwendung für die eigene App
- Nutzer:innen Support
- Wartung des Systems (Programmierer)
- Implementierung der individuellen Analysewerkzeuge

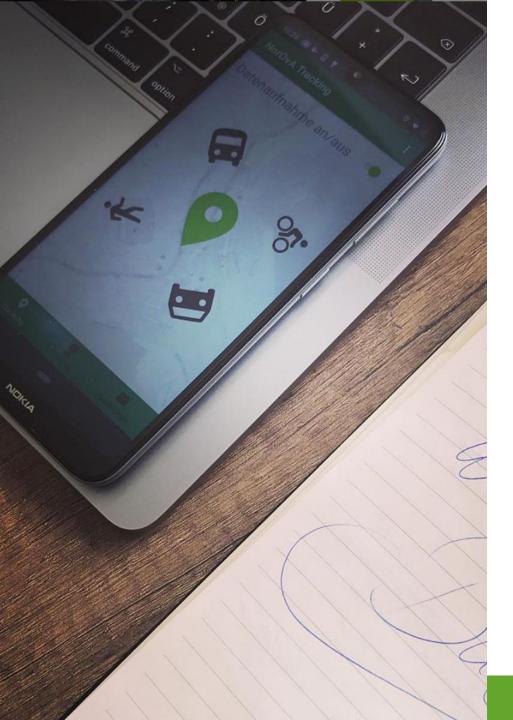
Schnittstellen Lösung

Features

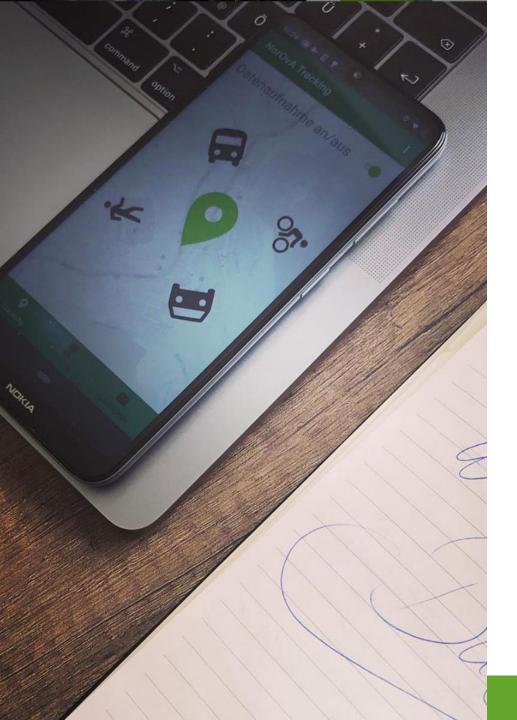
- Trackingdatenaufnahme mit der eigenen App
- Webinterface mit Analysemöglichkeiten
- Integration unterschiedlichster Geräte

Was wird benötigt?

- Backend Server (Programmierer)
 - Installation der NorOvA-Server Anwendung
 - Anpassung der NorOvA-Server
 Anwendung für die eigene App
 - Implementierung der individuellen Analysewerkzeuge


Wie bekommen wir Nutzer*innen?

Gewinnspielfunktion



Warum NorOvA?

- Definierte Nutzergruppe
- Universell einsetzbar:
 - Einbindung Mobiler Geräte/Gefäße
- Volle Systemkontrolle
- Nutzerinteraktionen
- Umfangreiche Analysefunktionen
- White-Label Lösung
- Integrationslösung

Mehrwert & Verwertung

- Unterstützung bei Ermittlung des Mobilitätsbedarfs und Modalsplit
- Berücksichtigung der Ist-Daten für Planung und Analyse
- Hohe Übertragbarkeit auf andere (ländliche)
 Gebiete
- Vermeidung nicht nutzerorientierter Planung

Mobility Hubs als Erweiterung des ÖPNVs

- Die Grundlage bildet die intermodale Verknüpfung
- Ein besseres Angebot des ÖPNV kann durch Ausbau von Mobility Hubs im Ländlichen Raum die Anschlussmobilität verbessern und zu einer Stärkung des öffentlichen Verkehrs beitragen.
- Ziel: Mobilitätshubs auch im ländlichen Raum

Mikromobilität zur Bewältigung der letzten Meile im ÖPNV (speziell im ländlichen Raum)

- These: Die erste/letzte Meile im ÖPNV kann im ländlichen Raum mit Modi der Mikromobilität abgedeckt werden
- Ländliche Mobility Hubs können diese Ergänzung ermöglichen
- Beispiele für Micromobilität
 - E-Scooter
 - E-Bikes

https://blog.energiedienst.de/multimodale-mobilitaet/ (28.04.21)

Zukünftige Möglichkeiten durch <u>autonome Fahrzeuge</u> vordenken

- Autonome Fahrzeuge bieten die Chance, kleinteilige und flexible Bedienung im Ländlichen Raum:
 - als Zubringer für den Linienverkehr
 - für die Erhöhung der Frequenzen
 - bei dünn besiedelten Räumen
- Zukünftige Entwicklungen müssen schon heute vorgedacht werden
- Bei einem technischen Reifegrad soll die verkehrliche Erprobung im Rahmen von Feldversuchen in ausgewählten Ländlichen Räumen erfolgen

Zusammenfassung und Ausblick

HOCHSCHULE FURTWANGEN UNIVERSITY HFU

- Der Modalsplit muss auch in ländlichen Regionen nachhaltiger werden
- Intermodalität f
 ür die letzte Meile
- Micromobilität und on Demand ÖPNV

Kontakt: mobilitaet@hs-furtwangen.de

